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ABSTRACT

This report illustrates a proposed definition of surface density
of contamination for the deposit of fractionated fallout. The 1llus-
trations employed give estimates of the dependence of exposure-dose
rate on the degree of radionuclide fractionation and of the sensitivity

of this dependence to independent fission yield input data, total yield
of the device, and time of exposure.
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SUMMARY

Problem

The effects of radionuclide fractionation severely complicate the
prediction of many properties of nuclear bouwb debris, including the
definition of surface density of contamination and the dependence of
exposure~dose rate on the degres of fractionation.

Findings

A gseml-empirical model can he used to illustrate & new definition
of surface density of contamination for fractlionated fallout. The
wolel Ls recomnended Tor rule-of-Lhumb estimtes of the ettect of
fractionation on exposure-dose rate, and as a stop-gap until elther
better models or more extensive information becomes availeble.
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PREFACE

This series of reports presents and discusses the effects of
radionuclide fractionation in nuclear bomb debris. Part I (Reference
1) defined fractionation as "any alteration of radionuclide composition
occurring between the time of detonation and the time of radlochemical
analysis which causes the debris sample to be nonrepresentative of the
detonation products taken as a whole." It showed how the radionuclide
compositions of fractionated camples could be correlated empirically \
by logarithmic relations. Part II (Reference 2) used these relations
as the basis of a technical discussion of contemination density as
applied to fractionated nuclear debris. Part III (Reference 3) presen-
ted a theoretical foundation for the cbaerved logarithmic correlations
of Part I. It used this as a simplified means of estimating fraction-
ation as a funrtion of particle size aud Lhe partition of product radio-
nuclides among local, Iintermediate, and worldwlde fallout.

The present report cxtends the calculationc of Part III to show how
fractionation-correlation perameters can be used to estimate the expo-
sure-dose rate from nuclear debris with various degrees of fractionation.
It serves to illustrate the proposals made in Part II.
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INTRODUCTION

Local fallout from a land-surface nuclear detonation consists of
the larger radioactive particles formed in the explosion. Because of
radionuclide fractionation, it is depleted in volatilely behaving mass
chains (such as the mass-89 chain) relstive to refractorily behaving
mass chains (such as the mass-95 chain). Worldwide fallout, on the
other hond, consists of the smaller particles of debris and is rela-
tively enriched in volatilely behaving mass chains. The effect of
fractionation on exposure-dose rate from fallout deposits is to pro-
duce a wide variation in the ratio of dose~rate to fission-product
abundance, for any given mass chain, or of one fission-product abund-
ance Lo another, for certain pairs of mass chains.

The radiochemical composition of fallout will depart {rom the
representotive composition of debris by a guantity which we have called
the degree of fructionation and have defined quantitatively as the
base-10 logarithm of the fractlionation ratio:

* 19816 T8g,95

The fractionation ratio (1'89 95) ig the ratio of the number of fissions
(from the device in question5 required to produce the quantity of mass-
89 chain found at & given location, to the number required to produce
the quantity of mass-95 chain at that location. The relation of our
notation to that of other authors 1s given in Appendix A.

’I'Lio tgeoretical methods exlst for estimating ¢ in local fall-
out,3,%4,2:% and empirical relationships are available for estimating
the relative amounts of other mass chains as & function of ¢.1 By com-
bining either of these theoretical methods with the empirical relations,
one obtains a semiempirical means of estimating the radionuclide compo-
sition; and hence the resulting exposure-dose rate, as a function of
particle size. A fallout-transport model can then be used to calculate
these same quantities at any point in the fallout pattern.
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The purpose of this report is threefold: (1) to illustrate the
empirical estimation of radionuclide composition as a function of ¢;

%2; to estimate the resulting exposure-dose rmate as a function of ¢,

3) to obtain 8 prelimimry estimate of the sensitivity of this relation-
ship to several kinds of input data; and (4) to illustrate the applica-
tion of a new definition of surface density of contamination.2 1In pre-
senting thie material, famillarity with the previous reports in this
series is agsumed.

The procedure for estimating the radiochemical composition of a
figsion-product mixture as a function of ¢ is as follows. We consider
only those nuclides which, at some time, contribute significantly to
the dose rate. These nuclides and their isobars form the significant
mass chains. Next, the fission-product elements are divided into re-
fractory and volatile groups, according to their vapor pressures at a
chosen temperature. The temperature chosen in this report corresponds
roughly to the solidification temperature of molten silicate soil. For
any nuclear detonation, the total yleld of the device determines the
solidification time.* In any chain, the fraction of atoms that exists
in the form of refractory elements at the time of solidification (FR)

Is a meacure of the refmetory pature of thnt mar chnin taken as a vwhole.

According to the magnitude of the fraction, the chains are grouped into
three categorles: volalile, refractory, or mixed. The specification of
o (l.e., the degree of fractionalion) will be shown to L'ix the value of
the [ractionation coelficient (rk,QG) Tor each chain k and, therelore,
the radiochemical composition.

Part IT of this series® showed that one could estimate the effect
ol ractionation on exposure~dose rute by summing the products of the
fractionation coeflicients and the unfroctionated contributions for the
individual chalns. In so doing, it was convenient to divide the chains
into groups, according to the volatility shown by their behavior. This
procedure will be carricd out in detaill in the present report. Thus,
these calculations will illustrate the definition of surface density
of contamination proposed in Part II.

*The energy release from a nuclcar device is given sometimes as the
yield from fission reactions and sometimes as the total (fireball)
yield, The latter includes thce former plus the energy releaged by
fusion reactions. The vleld from fission reactions plays the domin-
ant role in producing radiocactivity. The total or fireball yield,
together with the nature and location of environmental material,

determines the condensation time and solidification time for the debris.
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PRELIMINARY CONSIDERATIONS

Selection of Significant Chains

Although some 90 mass chains are produced in the thermal nsutron
figsion of U235, only about half of tlese willl, at some time or other,
make & significant contribution to the exposure dose rate. Therefore,
calculations can be considerably shortened by considering only signi-
ficant mass chains. In selecting those chains, and in all subsequent
dose-rate calculations, the contributions of individual fission products,
such as those compiled by Miller and Loeb for the products of thermal~
neutron fission of U237, will be used.T For any given time, the nuc-
lides contributing less than 0.3 % to the total dose rate at that time
vil). be considered insignificant. A significent nuclide and its isobars
form a significant mass chain., These 47 significant chains will be
listed in Table 1, together with the time interval in which they are
significant. The earliest time considered will be 45.8 m.

Criterion of Volatillity

The cmpirical . -lationships derived In Reference 1 depend upon a
quantity, FR, cqual to the fraction of a particular chain that is re-
Tractory at the time of condensation in the f'ireball. Miller's thermo-
dyuamle model™»® for land-surface-burst fallout adopte an ildealized
goil that melts at 1400°C. Above this temperature, Miller's first stage
ol condensation pertains, and the product nuclides distribute themselves
uniformly throughout the volume of molten particles. Below this tempera-
ture the particles are frozen and produce nuclides can only deposit on
the surfaces. Miller calls this the second stage of condensatlion. In
order to maintain consistency between the two approaches, we will also
adopt this approximation and call all elements volatile whose predomin-
ant species have a normal bolling peoint less than 1400°C. These ele-
ments are As, Sc, Br, Kr, Rb, Mo, Tc, Te, I, Xe, and Cs. All other
elements will be called refractory.

Calculation of Fp

——

To calculate F,, we now need an equation to estimate the time at
which 1400°C is reached by the cooling fireball. From Table 3.8 of
Reference 6, the equation

t (scc) = 1.88 WO'363

can be inferred, where W is the total yleld in kt.
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Bolles and Balloud tabulate, for U235-thermal neutron fission, the
number of atoms of each fission-product mass chain present in various
elemental forms at these times. These elemental distributions are
calculated both according to Present's minimum kinetic energy (MKE) §
theory of charge distribution,9 and according to the equal charge dis- ’
placement (ECD) theory of Glendenin, Coryell and Edwards.lO Although
the latter treatment 1s more widely preferred, we will carry out cal-
culations on both bases in order to illustrate the sensitivity of the
calculations to the fractional chain yields.*

A sample calculetion of FR for the mass-92 chain, according to
Present's theory, for a solidification time of 1 sec,is given below.
Values of FR for the significant mass chains are given in Table 1 for
both theories of independent yield (nuclear charge distribution) for
solidificetion times of 6 and 41 sec. According to the equation above,
these correspond to total ylelds of about 25 kt and 5 ML, respectively.

Mass-92 Decay Chain  Half-Lite Atoms per 10%  Refractory Atoms

Fissions at per 10" Fissiouns
41 sec. (Ref,8)
Br 1.5 &% 0 0
il
Kr 3 4 0 O
4 b
Rb 17 o® 102 0
4
Sr 2.7 h Wt b7
!
Y 3.5 h 1l 1
¢
Zr stable ] 0
Total 580 478

P, = 478/580 = 0.82

a. Estimted half-life.
b. For silicate soil, Rb would probably behave refractorily because ‘
1t forms refractory silicate compounds.

*The fractional choin yield of a fission-product radionuclide is the
ratioc of the independent (primary) yield of that nuclide to the total
chain yield for that nuclide's mass chain. The concept appllies only
at the instant of fission.



Volatile, Mixed, and Refractory Chains

The significant mass chains can now be divided into three groups

(volatile, mixed, or refractory) according to the Fg value for that
chain. Chaine with 0.98 < Fp £ 1.00 are called refractory, chains with
0.02 < Fg < 0.98 are called mixed, and chains with 0,00 Fr £ 0.02
arce called volatile.

For unfractionated debris, the total exposure~dose rate and the
contributions of the individual groups are shown as functions of time
in Figs. 1 through 4 for the two yleld theories and the two condensa-

tion times.
ures.

The total curve is, of course, the same in all four fig-

The percentage contributions of each group to the total at 1.12

and 23.8 hr are shown 1n Table 2.
dose rate 18 accounted for by the signiflcant chains.

TABLE 2

As can be seen, 98 % or more of the

Contribution of Groups to Unfractionated Dose Rate (%)

Group

1.12=hr dose yate

23,81 duse rule

Present  Glendenin Pregent Glendenin
G-gec Sovlidification Time
Volatile 33.h 30.9 16.8 0.h
Mixed 47.0 ho,» 51.0 67.8
Refractory 18.5 18.8 30.4 29.9
Neglected 1.1 1.1 1.4 1.9
L1-sec Solidification Time
Volatile 48.h 48.4 16.8 16.8
Mixed 2.2 20.9 38.6 38.0
Refractory 29.2 29.5 ha.7 %3.3
Neglected 1.2 1.2 1.9 1.9

5
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RELATION TO THE NEW DEFINITION OF CONTAMINATION IEVEL

Part II of this serj.eas2 proposed & new definition of surface den-
sity of contamination which was applicable to fractionated debris. The
new definition was summarized by Eq. 18 of that report as

1-by
D(t) = ags [Z YD (t) + I (rgg o5)  Dy(r) + Y, D(¢)]
quasi-refractory quasi-volatile induced
chains chains chaing

where oge 158 the contamination surfece density in mass-95 chaln equi-
valent ??ssions per unit area, Y, is the average number of fission-
product or induced atoms of mass k produced initially per fission, and
Di(t) is the dose rate contribution of the mass-k chain per atom of
mees k per unit area at the time t. The quantity bx is a correlation
paraneter which is dicussed 17' Ref. {3), and which has been observed to
be apprgximte]y equal to FRl 2 in debris from high-yield surface
bursle .

For illustration and interim predictions, the "air ionization rutes"
{octually the exposure-dose rates) of individual fission-product radio-
nuclides tabulated by Miller and Loeb provide a convenient source of
data. These authors tabulate in units of nr/hr, the "air lonization
rate" three feet above an infinite plane, eachhsquare foot of which is
uniformly contaminated with the products of 10" thermal-neutron-induced
fissions of U235, In their Table A-1, they list the individual contri-
bution of each fission-product radionuclide at various convenlent times.
In the notation of Ref. 2, (cf. Eq. 6) each entry would be written

D, = ¢,¥,4,6, (t) A

J Kk J gk J

with the contamination surface density (o)) in units of 10% fissions
per sq ft, the total chain yield for mass k (Y)) being the value for
thermal-neutron fission of U235 , and the product of the dose-rate con-
version factor (d4) the chain fraction (Gs) and the decay constant
(hd) beirg in unigs of nr per hr per fissi . Since the tabulated data

*This relation neglects the departure from zerc of the term a, of Refs.
2 and 3. When dealing with samples of fallout, rather than particles
of & single size, this is Justifiable.
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is for unfractionated fission products, each radlonuclide has the same

value of oy. Thus, Dy gives the dose rate from each radionuclide under .
the conditions stated, and if the values are summed for all nuclides

of a given rmss k, one obtains Dy, the dose rate from the mass-k chain

at the time t. In Ref. 2, it was found convenlent to abbreviate the

sum EJdJGJk(t)KJ by Dy(t) and write (Ref. 2, Eq. 7)

¥ Gt

Dy = oY, D (¢)

To 1llustrate the application of Eq. 18 with Miller and loeb's
data, we will consider first the quasi-refractory term. The value of
this term is estimated by (1) choosing from Table i1 the mass chaing
with 1.00 > Fp > 0.98 for the appropriate conditions, (2) summing all
the date tabulated by Miller and Loeb for these chains at the time of
interest t.

In calculating the value of the quasi-volatile term, it has been
found convenlent and instructive to congider the mass chains to fall
into two classes: a purely voletile class with 0.02 2> FR > 0.00 and a
mixed class with 0.98 > Fp > 0.02, For the purely volatile rlngs, we .
(1) chooge the appropriate mass chains -2 above, (2) sum their contri-
butions Tor the time ol interest, and (3) multiply the sum by the frac-
tionation ratio we wish to apply. The contribution for the mixed chains
is calculated similarly, except that in each case the fractionation 1/2
ratio must be raised to the appropriate power l-by, here taken as 1 « Fp™ "%,
for the chain in question.

The induced chaiﬂs are not considered in this report. The value
of oy 1s taken as 10" fisslons per square fod.

je



CALCUIATIONS AND RESULTS

Exposure-Dose Rates

Each term in the summation of D(t) can be considered as the pro-
duct of the contribution from unfractionated fission products
(og5 YiDk) and a fractionation correction factor (rgg’ 5)1‘bk. Fig-
ure 5 1llustrates the varistion of this correction factor with frac-
tionation ratio (r89,95) as computed for several values of Fy.

As a specific example, consider the mass-132 chain contribution
at 1.12 h from a burst with a hl-sec solidification time. From Table 1,
the value of Fp according to Present's theory is 0.40. From Fig. 5,
Lhe correction factors for rgg g5 values of 1/3, 1/10, 1/30 and 1/100
would be 0,667, 0.427, 0.28h and 0.182 respectively. The unfraction-
ated contribution of this chain to the total dose rate is calculated
from Rel. 7 as 0.01010 nr/hr/loh rissions/It”. Contributions which
the chaln would in fact provide,for the [ractionation ratios, listed,
are therefore 0.0067k, 0.00431, 0.00287 and 0.0018: nr/hr/10% fissions/
Tt2, respectively. Similar calculations of contributions for all the
other mixed chains and summation of these contributions give values of
0.846, 0.554, 0.434 and 0.347 nr/hr/10% rissions/ft2 respectively, at
these fractionation ratios. Tables 3 through 6 1ist the contributions
of each group for each set of conditions considered, together with
their totals. They are given both in units of nr/hr for 10" mass-95
chain equivalent fissions¥sq 't and in kr/hr for 1.h4s x 1023 mass-95
chain equivalent fissions/sq mi. To 1llustrate the functional behavior
of the contributions, Figs. 6 through 9 show the variations of compon-
ent contributions and total dose rates with the [ractionation ratio, so
that the effects of solidification time, independent-yield theory and
exposure time can be independently observed. The figures are drawn
for a constant number of mass-95 chain fissions. On this basis the
contribution of the refractory group (b,=1) is constant and the contri-
bution of the volatile group (bk=0) is directly proportional

¥The number of mass-95 chain equivalent fissions (f 5) is equal to the
number of device fissions which produced the quantigy of mase-95 chain
obsexrved.
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Pig. 6 Relative Exposure-Dose Rate From Volatile-Depleted Fission
Products as a Punction of Fractionation Ratio. Same geometry
as Fig. 1. (1.12 h, 6-gec, solidification, Glendenin's Theory)
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Fig. 7 Relative Exposure-Dogse Rate From Volatile-Depleted Fission
Products &8s 8 FPunction of Fractionation Ratio. Same geometry
as Pig. 1. (1.12 h, kl-sec, solidification, Glendenin's Theory)
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Fig. 9 Relative Exposure-Dose Rate From Volatile-Depleted Fission
Products as a Function of Fractionation Ratio. Same geometry
as Fig. 1. (23.8 h, ll-sec. solidification, Present's Theory)



to the fractionation ratio. In order to include the contribution of
induced activities, one need only increase the contribution of the

refractorily behaving group by the samount appropriate to the device
and environmental conditions of interest.

Estimated Decay and the Way-Wigner Rule

By assuming that, at reassonably early times unfractionsted mixed
fission products behave as a statistical assembly of emitters with
decay constants linearly related to the fifth power of the disintegra-
tion energy, Way and Wignerll derived a t-1-2 dependence for the gross
beta decay. The rule has been found useful in estimating the exposure-
dose rate decay of mixed fission prod.ucts,:La but has become the subject
of a popular fallacy, namely, that departures from the rule indicate
fractionation, while correspondence to the rule indicates representa-
tivity. To illustrate the effect of fractionation on the decay of
exposure dose rate, Table 7, 1lists the ratio of the 1,.12-hr exposure-
dose rate to the 23.8-hr exposure-dose rate as_calculated for the
various conditions listed here and from the t-1:2 yrule. The calecula-
tions show that, rather than producc a departure from the t-1.2 pule,
it is possible that, in the absence of induced activities, fractiona-
tion romld promote correcpondcencc to the rule. The maln poinbt here is
to beware of superficial generalizetions based on such a complicated
property of nuclear debris as gross decay rate.

TABLE 7

Ratio of 1.12-hr Exposure-Dose Rate to 23.8-hr Exposure Dose
Rate for Various Conditione

rg 6-gec Solidification L1-gec Solidification
9,95 Present Glendenin Present Glendenin
1/3 46 46 43 L2
1/10 b1 L1 38 38
1/30 Lo Lo 36 36
1/100 Lo 39 3 36

0 32 34 37 36
Unfractionated value (r8 =1): 53

Way-Wigner value (1.12/2338)-1-2: 39
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DISCUSSION

Although the calculations described here are primarily intended
to illus trate the application of a new definition of surface density
of contamination, the results also illustrate the magnitude of the
variation in exposure-dogse rate to be expected from fractionation, and
the sensitivity of the results to several Important variables. During
and subsequent to the preparation of this report, more up-to-date and
realistic input data was and is becoming available. This data includes
total chain and independent fission yields for various fission procege~
ses, improved dose-raie conversion factors from new decay-scheme infor-
mation, and {ractiomation-correlution parasmeters trom silicate-surface
bursts. More detailed ealeulations will be made when the acguicition
of this input and a compuler program for its application have been
completed,

For the present, the predicted dose-rate {rom local fallout for a
given degree of fractionation does not appear sensitive to the inde-
pendent fission-yiecld data used as input. The sensitivity to total
yield is significant only at extreme degrees of fractionation. The
predicted effect of fractionation varies conslderably with the time at
which exposure-dose rate ils estimated.

Many other f{ractionation effects remain to be dealt with. These
may be of much greater magnitude and show much greater sensitivity to
independent fission-yield data and solidification or condensation time
than does the effect on exposure~dose rate from local fallout in land-
surface burst debris. These include: the partition of radionuclides
between local, intermediate and world-wide fallout (as treated by a
theoretical rather than a semi-empirical method); the effect on trensi-
ent dose and dose-rate; the exposure dose-rate from debris which is
enriched in volatilely-behaving mass chains; fractionation in venting
underground and underwater bursts, on land surfaces or particle sur-
faces that show diffeerent correlation properties than those used here,
or in tower and low air bursts.
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work published Ly different investigators on the subject of radionuclide

APPENDIX A

COMPARISON OF OUR NOTATION WITH THAT OF OTHER WORKERS

The following comparison of notation will help the reader compare

fractionation in nuclear debris.

are

The symbols used to describe fractionation in this series of reports

as follous:

L

89,95

Total number of {isslons occurring in a nuclear event

Total number of atoms of chain i, efther fission product
or induced activity, occurring in the event

Total yleld of chain i in the event. ¥, = Ai/F

Number of atoms of chain 1 in a given sample as determined
by radiochemical analysis and corrected to the time the
event occurred. The same symbol has also been used for a
correlstion parameter (sce by below).

The number of fissions in the sample according to the
analysis for chein i, hence, the mass-1 chain equivalent

fisslons. f, = ai/Yi =8, F‘/A1

The fractionation coefficient for the 1 and j chains.
= f /T
T3 47y

The fractionation ratio. A measure of the departure of a

given samples?' radiochemical composition from representa-
tivity.

The degree of fractionation. ¢ = 1°g10r89 95
’
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bi The slope of the regression curve correlating log r g
with «¢. 1 - by is the slope for correlating leog r1;9
with ¢. log 1074,95 = 81 + (1 - bi)""

FR(‘G) The fraction of etoms in & given mass chain which are in &
refractory (condensible) form at the time t under the fire-
ball or cloud conditions prevailing at that time.

Edvarson, Low and Sisefsky (Al) use fy_gs which they call a "frac-
tionation factor,"” to indicate the fractionation of nuclide A fram the
masg-95 chain. This would be equivalent to our rp,gs5, if we used A,
rather than i, to indicate the mass chain.

Mamuro, et sl., (A2) also call this same quantity a froctiomation
factor, but give it the symbol f.

Miller's notation (A3) is more complex. MNe uses a variely of
symbole, which he calls "fractionation numbers," in apparently the
following wny. On page 51 of his report, he uses ro(A) in & manner
equivalent to rp,gs, although he defines it on page xxviii more like
our Fg. The quantity RQQ on & eL_62 of his report, when referred to
thermal neutron [lsslong [rom U235 as e reterence event, is the faml-
1iar R99(A) value, frequently wsed by radiochemists and diagnosticians.
When referred to a given nuclear burst as the reference event, however,
1t beeowes vy gg 1 our notation or Iy 8 in Bdvarson's. On pages 107
and 108, rq ?&,1;) 1s our Fr(t), while = (A) is again 1y gg-

26
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Al.

a2,

A3.
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